Lung Cancer Diagnosis, Treatment, and Prognosis Using Machine Learning

Authors

  • Rimjhim Kumari Sharda University https://orcid.org/0009-0009-6776-0411
  • Shalu kumari Department of Computer Science & Applications, Sharda School of Computing Science & Engineering, Sharda University, Greater Noida – 201306, India
  • Sharik Ahmad3 Department of Computer Science & Applications, Sharda School of Computing Science & Engineering, Sharda University, Greater Noida – 201306, India https://orcid.org/0000-0001-5994-4995

DOI:

https://doi.org/10.62760/iteecs.4.2.2025.133

Keywords:

imaging and sequencing technologies, intricate datasets, immunotherapy, prediction, detection

Abstract

Recent advances in imaging and sequencing technology have enabled a systematic advancement in the medical treatment of carcinoma of the lungs. Meanwhile, the human mind's ability to comprehend and make optimal use of the collection for this enormous amounts of knowledge is limited.. The integration and analysis of these vast and intricate datasets, which have thoroughly described lung cancer by utilizing various viewpoints from the accumulated data, are made possible in great part by machine learning-based methodologies. We give a summary of machine learning-based methods in this review that support the various facets of lung cancer diagnosis and treatment, such as immunotherapy practice, prognosis prediction, auxiliary diagnosis, and early detection. We also highlight the challenges and opportunities for additional artificial intelligence applications in lung disease.

References

Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F., & Heist, R. S. (2021). Lung cancer. The Lancet, 398(10323), 535– 554.

Svoboda, E. (2020). Artificial intelligence is improving the detection of lung cancer. Nature, 587(7834), S20–S22.

Ling, S., Hu, Z., Yang, Z., Yang, F., Li, Y., & Lin, P., et al. (2015). Extremely high genetic diversity in a single tumor points to the prevalence of non-Darwinian cell evolution. Proceedings of the National Academy of Sciences of the United States of America, 112(21), E6496–E6505.

International Cancer Genome Consortium, Hudson, T. J., Anderson, W., Artez, A., Barker, A. D., Bell, C., et al. (2010). International network of cancer genome projects. Nature, 464(7286), 993–998.

Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., & Ozenberger,

B. A., et al. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 45(10), 1113–1120.

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., et al. (2013). The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. Journal of Digital Imaging, 26(6), 1045–1057.

Pavlopoulou, A., Spandidos, D. A., & Michalopoulos, I. (2015). Human cancer databases (Review). Oncology Reports, 33(1), 18.

Luo, Y., Wang, F., & Szozovits, P. (2016). Tensor factorization toward precision medicine. Briefings in Bioinformatics, 18(5), 811–814.

Genomics Proteomics Bioinformatics 20 (2022) 850–866

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

Chao, G., Mao, C., Wang, F., Zhao, Y., & Luo, Y. (2018). Supervised nonnegative matrix factorization to predict ICU mortality risk. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, 2018, 1189–1194.

Chi, E. C., & Kolda, T. G. (2012). On tensors, sparsity, and nonnegative factorizations. SIAM Journal on Matrix Analysis and Applications, 33(4), 1272–1299. https://doi.org/xxxx

Tran, K. A., Kondrashova, O., Bradley, J., Williams, E. D., Pearson, J. V., & Waddell, N. (2021). Deep learning in cancer diagnosis, prognosis, and treatment selection. Genome Medicine, 13, 152. https://doi.org/xxxx

Zeng, Z., Yao, L., Roy, A., Li, X., Espino, S., & Clare, S. E., et al. (2019). Identifying breast cancer distant recurrences from electronic health records using machine learning. Journal of Healthcare Informatics Research, 3(3), 283–299. https://doi.org/xxxx

Cruz, J. A., & Wishart, D. S. (2007). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 59–77. https://doi.org/xxxx

Wang, H., Li, Y., Khan, S. A., & Luo, Y. (2020). Prediction of breast cancer distant recurrence using natural language processing and a known edge-guided convolutional neural network. Artificial Intelligence in Medicine, 101, 101977. https://doi.org/xxxx

Cochran, A. J. (1997). Prediction of outcome for patients with cutaneous melanoma. Pigment Cell Research, 10(3), 162–167. https://doi.org/xxxx

Zeng, Z., Li, X., Espino, S., Roy, A., Kitsch, K., & Clare, S., et al. (2018). Contralateral breast cancer event detection using natural language processing. AMIA Annual Symposium Proceedings, 2018, 1885–1892.

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8–17. https://doi.org/xxxx

Luo, Y., Xin, Y., Hochberg, E., Josh, R., Uzuner, O., & Szolovits, P. (2015). Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text. Journal of the American Medical Informatics Association, 22(5), 1099–1119.

Bezrekry, S. (2020). Artificial intelligence and mechanistic modeling for clinical decision-making in oncology.

Clinical Pharmacology & Therapeutics, 108(4), 471–486.

Li, Y., & Luo, Y. (2019). Optimizing interpretable gene-targeted panels for tumor mutational burden estimation.

Scientific Reports, 2019(11), 1162–1173.

Bhinder, B., Gilvarry, C., Madhukar, N. S., & Elemento, O. (2020). Artificial intelligence in precision oncology.

Genomics, Proteomics & Bioinformatics, 20, 850–866.

Zeng, Z., Espino, S., Roy, A., Li, X., Khan, S. A., & Clare, S. E., et al. (2018). Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinformatics, 19, 498.

Luo, Y., Sohani, A. R., Hochberg, E. P., & Szolovits, P. (2014). Automatic lymphoma classification with sentence subgraph mining from pathology reports. Journal of the American Medical Informatics Association, 21(4), 824–832. https://doi.org/10.1136/amiajnl-2013-002612

Luchini, C., Pea, A., & Scarpa, A. (2022). Artificial intelligence in oncology: Current applications and future perspectives. British Journal of Cancer, 126(4), 4–9.

Zeng, Z., Vo, A., Li, X., Shidfar, A., Saldana, P., Blanco, L., et al. (2020). Somatic genetic aberrations in benign breast disease and the risk of subsequent breast cancer. NPJ Breast Cancer, 6, 24.

Na, J., Zong, N., Wang, C., Midthun, D. E., Luo, Y., Yang, P., et al. (2021). Characterizing phenotypic abnormalities associated with high-risk individuals developing lung cancer using electronic health records from the All of Us research workbench. Journal of the American Medical Informatics Association, 28(12), 2313–2324.

Fujita, H. (2020). AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiological Physics and Technology, 13(1), 1–9. https://doi.org/10.1007/s12194-019-00540-9

Yanase, J., & Triantaphyllou, E. (2019). A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Systems with Applications, 138, 112821.

Abe, Y., Hanai, K., Nakano, M., Ohkubo, Y., Hasizume, T., Kakizaki, T., et al. (2005). A computer-aided diagnosis (CAD) system in lung cancer screening with computed tomography. Anticancer Research, 25(6), 483–488.

McWilliams, A., Tammemagi, M. C., Mayo, J. R., Roberts, H., Liu, G., Soghrati, K., et al. (2013). Probability of cancer in pulmonary nodules detected on first screening CT. New England Journal of Medicine, 369, 910–919.

van Riel, S. J., Ciompi, F., Wille, M. M. W., Dirksen, A., Lam, S., & Scholten, E. T., et al. (2017). Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers. PLoS One, 12(11), e0185032.

Wille, M. M. W., van Riel, S. J., Saghir, Z., Dirksen, A., Pedersen, J. H., & de Hoop, B., et al. (2015). Predictive accuracy of the PanCan lung cancer risk prediction model—External validation based on CT from the Danish Lung Cancer Screening Trial. European Radiology, 25(10), 3093–3099.

Kriegsmann, M., Casadonte, R., Kriegsmann, J., Dienemann, H., Schirmacher, P., & Kobarg, J. H., et al. (2016). Reliable entity subtyping in non-small cell lung cancer by matrix-assisted laser desorption/ionization imaging mass spectrometry on formalin-fixed paraffin-embedded tissue specimens. Molecular & Cellular Proteomics, 15(10), 3081–3089.

Mohammed, B. A., Brennan, P. C., & Mello-Thoms, C. (2017). A review of lung cancer screening and the role of computer-aided detection. Clinical Radiology, 72(6), 433–442.

Ardila, D., Kiraly, A. P., Giger, M. L., MacMahon, H., Sone, S., & Doi, K. (2019). Large-scale performance of automated lung nodule detection and classification models in a CT screening program. Radiology, 291(2), 418–429.

Xu, X., Gao, M., Bagg, S. J., Wu, A., & Mollura, D. J. (2016). Computer-aided lung nodule tracking using hybrid shape and appearance features. In D. Niemeijer, J. S. Soekamo, & L. Subasic (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 (pp. 662–670). Springer.

Chaganti, S., Ko, J., Song, R., & Bagci, U. (2019). Automated stratification of lung nodules using shape, spatial attention model, and deep learning. Medical Image Analysis, 20(1), 101–115. https://doi.org/10.1016/j.media.2019.101115

Ciompi, F., de Hoop, B., van Riel, S., Chung, K., Scholten, E. T., & Oudkerk, M., et al. (2015). Automatic classification of pulmonary peripherial nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 20(5), 196–202.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

Oquab, M., Elger, D., Zhang, X., Mathieu, M., Fergus, R., & Lecun, Y. (2014). Convolutional network recognition, localization, and detection using convolutional networks. arXiv preprint arXiv:1412.5222.

Wang, C., Wang, T. T., Zhao, M., & Wu, S. T. (2019). Generative adversarial networks and its application to brain surface processing. Medical Image Analysis, 30(2), 50–64.

Gu, X., Wang, Y., Chan, T. F., Thompson, P. M., & Yau, S. T. (2003). Genus zero surface conformal mapping and its application to brain surface mapping. Information Processing in Medical Imaging, 18, 172–184.

Venkadesh, K. V., Setio, A. A. A., Schreuder, A., Scholten, E. T., Chung, K. M., & Wille, M. M. W., et al. (2021). Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology, 300, 438–447.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9.

Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25, 954–961.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2980–2988.

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2020). Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327.

Li Y et al / Machine Learning Applications in Lung Cancer

Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? A new model and the Kinetics dataset.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4724–4733.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826.

AbdulJabbar, K., Raza, S. E. A., Rosenthal, R., Jamal-Hanjani, M., Veeriah, S., Akarca, A., et al. (2020). Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nature Medicine, 26, 1054–1062.

Raza, S. E. A., Cheung, L., Shaban, M., Graham, S., Epstein, D., Pelengaris, S., et al. (2019). Micro-Net: A unified model for segmentation of various objects in microscopy images. Medical Image Analysis, 52, 160–173.

Sirinukunwattana, K., Raza, S. E. A., Tsang, Y. W., Snead, D. R. J., Cree, I. A., & Rajpoot, N. M. (2016). Locality- sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35, 1196–1206.

Ocampo, P., Moreira, A., Coudray, N., Sakellaropoulos, T., Narula, N., Snuderl, M., et al. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Journal of Thoracic Oncology, 13(S562).

Yao, Q., Xiao, L., Liu, P., & Zhou, S. K. (2021). Label-free segmentation of COVID-19 lesions in lung CT. IEEE Transactions on Medical Imaging, 40, 2808–2819.

Chuquicusma, M. J. M., Hussein, S., Burt, J., & Bagci, U. (2018). How to fool radiologists with generative adversarial networks? A visual Turing test for lung cancer diagnosis. IEEE International Symposium on Biomedical Imaging, 240–244.

Li, J., Jia, J., & Xu, D. (2018). Unsupervised representation learning of image-based plant disease with deep convolutional generative adversarial networks. 37th Chinese Control Conference, 9159–9163.

Lin, C. H., Lin, C. J., Li, Y. C., & Wang, S. H. (2021). Using generative adversarial networks and parameter optimization of convolutional neural networks for lung tumor classification. Applied Sciences, 11, 480.

Ren, Z., Zhang, Y., & Wang, S. (2022). A hybrid framework for lung cancer classification. Electronics, 11, 1614.

Pinsky, P. F., Gierada, D. S., Black, W., Munden, R., Nath, H., Aberle, D., et al. (2015). Performance of Lung-RADS in the National Lung Screening Trial: A retrospective assessment. Annals of Internal Medicine, 162, 485–491.

National Lung Screening Trial Research Team, Church, T. R., Black, W. C., Aberle, D. R., Berg, C. D., Clingan, K. L., et al. (2013). Results of initial low-dose computed tomographic screening for lung cancer. New England Journal of Medicine, 368, 1980–1991.

Herath, S., Rad, H. S., Radfar, P., Ladwa, R., Warkiani, M., O’Byrne, K., et al. (2021). The role of circulating biomarkers in lung cancer. Frontiers in Oncology, 11, 801269. https://doi.org/xxxx

Politi, K., & Herbst, R. S. (2015). Lung cancer in the era of precision medicine. Clinical Cancer Research, 21, 2213– 2220.

Relli, V., Trerotola, M., Guerra, E., & Alberti, S. (2019). Abandoning the notion of non-small cell lung cancer. Trends in Molecular Medicine, 25, 585–594.

Chen, J. W., & Dhahbi, J. (2021). Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods. Scientific Reports, 11, 13323.

Zeng, Z., Vo, A. H., Mao, C., Clare, S. E., Khan, S. A., & Luo, Y. (2019). Cancer classification and pathway discovery using non-negative matrix factorization. Journal of Biomedical Informatics, 96, 103247.

Jiao, W., Atwal, G., Polak, P., Karlic, R., Cuppen, E., Danyi, A., et al. (2020). A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11, 728.

Li, Y., & Luo, Y. (2020). Performance-weighted-voting model: An ensemble machine learning method for cancer type classification using whole-exome sequencing mutation. Quantitative Biology, 8, 347–358.

Eraslan, G., Avsec, Z., Gagneur, J., & Theis, F. J. (2019). Deep learning: New computational modeling techniques for genomics. Nature Reviews Genetics, 20, 389–403.

Luo, Y., & Mao, C. (2021). Panther: Pathway-augmented nonnegative tensor factorization for higher-order feature learning. Proceedings of the AAAI Conference on Artificial Intelligence, 37–180.

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C. T., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 8, 68–74.

Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine, 23, 89–109.

Luo, Y., & Mao, C. (2020). ScanMap: Supervised confounding aware non-negative matrix factorization for polygenic risk modeling. Proceedings of Machine Learning Research, 126, 27–45.

Zeng, Z., Mao, C., Vo, A., Li, X., Nugent, J. O., Khan, S. A., et al. (2021). Deep learning for cancer type classification and driver gene identification. BMC Bioinformatics, 22, 491.

Zhang, Y., Li, Y., Li, T., Shen, X., Zhu, T., & Tao, Y., et al. (2019). Genetic load and potential mutational meltdown in cancer cell populations. Molecular Biology and Evolution, 36, 541–552.

Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature, 500, 415–421.

Mathios, D., Johansen, J. S., Cristiano, S., Medina, J. E., Phallen, J., Larsen, K. R., et al. (2021). Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nature Communications, 12, 5060.

Chabon, J. J., Hamilton, E. G., Kurtz, D. M., Esfahani, M. S., Moding, E. J., Stehr, H., et al. (2020). Integrating genomic features for non-invasive early lung cancer detection. Nature, 580, 245–251.

Liang, W., Zhao, Y., Huang, W., Gao, Y., Xu, W., Tao, J., et al. (2019). Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics, 9, 2056–2070.

Raman, L., van der Linden, M., van der Eecken, K., Vermaelen, K., Demedts, I., Surmont, V., et al. (2020). Shallow whole-genome sequencing of plasma cell-free DNA accurately differentiates small from non-small cell lung carcinoma. Genome Medicine, 12, 35.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). Garland Science.

Kobayashi, K., Bolatkan, A., Shiina, S., & Hamamoto, R. (2020). Fully-connected neural networks with reduced parameterization for predicting histological types of lung cancer from somatic mutations. Biomolecules, 10, 1249.

Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumor types. Nature, 505, 495–501.

Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., et al. (2017). A pathology atlas of the human cancer transcriptome. Science, 357, eaan2507.

Whitney, D. H., Elashoff, M. R., Porta-Smith, K., Gower, A. C., Vachani, A., Ferguson, J. S., et al. (2015). Derivation of a bronchial genomic classifier for lung cancer in a prospective study of patients undergoing diagnostic bronchoscopy.

BMC Medical Genomics, 8, 18. https://doi.org/10.1186/s12920-015-0091-z

Podolsky, M. D., Barchuk, A. A., Kuznetcov, V. I., Gusarova, N. F., Gaidukov, V. S., & Tarakanov, S. A. (2016). Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels. Asian Pacific Journal of Cancer Prevention, 17, 835–838.

Choi, Y., Qu, J., Wu, S., Hao, Y., Zhang, J., Ning, J., et al. (2020). Improving lung cancer risk stratification leveraging whole transcriptome RNA sequencing and machine learning across multiple cohorts. BMC Medical Genomics, 13, 151.

Aliferis, C. F., Tsamardinos, I., Massion, P. P., Statnikov, A., Fananapazir, N., & Hardin, D. (2003). Machine learning models for classification of lung cancer and selection of genomic markers using array gene expression data. Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference, 67–71.

Genomics Proteomics Bioinformatics 20 (2022) 850–866

Shao, X., Lv, N., Liao, J., Long, J. B., Xue, R., Ai, N., et al. (2019). Copy number variation is highly correlated with differential gene expression: A pan-cancer study. BMC Medical Genetics, 20, 175.

Aliferis, C. F., Hardin, D., & Massion, P. P. (2002). Machine learning models for lung cancer classification using array comparative genomic hybridization. Proceedings of the AMIA Symposium, 7–11.

Daemen, A., Gevaert, O., Leunen, K., Legius, E., Vergote, I., & De Moor, B. (2009). Supervised classification of array CGH data with HMM-based feature selection. Pacific Symposium on Biocomputing, 468–479.

Jurmeister, P., Bockmayr, M., Seegerer, P., Bockmayr, T., Treue, D., Montavon, G., et al. (2019). Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Science Translational Medicine, 11, eaaw8513.

Luo, Y., Riedlinger, G., & Szolovits, P. (2014). Text mining in cancer gene and pathway prioritization. Cancer Informatics, 13, 69–79.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.

Mirhadi, S., Tam, S., Li, Q., Moghal, N., Pham, N. A., Tong, J., et al. (2022). Integrative analysis of non-small cell lung cancer patient-derived xenografts identifies distinct proteotypes associated with patient outcomes. Nature Communications, 13, 1811.

Xu, J. Y., Zhang, C., Wang, X., Zhai, L., Ma, Y., Mao, Y., et al. (2020). Integrative proteomic characterization of human lung adenocarcinoma. Cell, 182, 245–261.

El-Deredy, W., Ashmore, S. M., Branston, N. M., Darling, J. L., Williams, S. R., & Thomas, D. G. (1997). Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks. Cancer Research, 57, 4196–4199.

Zeng, Z., Amin, A., Roy, A., Pulliam, N. E., Karavites, L. C., Espino, S., et al. (2020). Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients. NPJ Breast Cancer, 6, 49.

Chang, Y., Park, H., Yang, H. J., Lee, S., Lee, K. Y., Kim, T. S., et al. (2018). Cancer drug response profile scan (CDRscan): A deep learning model that predicts drug effectiveness from cancer genomic signature. Scientific Reports, 8, 8857.

Menden, M. P., Iorio, F., Garnett, M., McDermott, U., Benes, C. H., Ballester, P. J., et al. (2013). Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE, 8, e61318.

Eisenhauer, E. A., Therasse, P., Bogaerts, J., Schwartz, L. H., Sargent, D., Ford, R., et al. (2009). New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). European Journal of Cancer, 45, 228–247.

Adam, G., Rampasek, L., Safikhani, Z., Smirnov, P., Haibe-Kains, B., & Goldenberg, A. (2020). Machine learning approaches to drug response prediction: Challenges and recent progress. NPJ Precision Oncology, 4, 19.

Jiang, J., Hu, Y. C., Liu, C. J., Halpenny, D., Hellmann, M. D., Deasy, J. O., et al. (2019). Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Transactions on Medical Imaging, 38, 134–144.

Pohlen, T., Hermans, A., Mathias, M., & Leibe, B. (2017). Full-resolution residual networks for semantic segmentation in street scenes. IEEE Conference on Computer Vision and Pattern Recognition, 3309–3318.

Qureshi, R. (2020). Personalized drug-response prediction model for lung cancer patients using machine learning.

TechRxiv, 13273319.v1.

Kapil, A., Meier, A., Zuraw, A., Steele, K. E., Rebelatto, M. C., Schmidt, G., et al. (2018). Deep semi-supervised generative learning for automated tumor proportion scoring on NSCLC tissue needle biopsies. Scientific Reports, 8, 17343.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66.

Geeleher, P., Cox, N. J., & Huang, R. S. (2014). Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biology, 15, R47.

Cule, E., & De Iorio, M. (2013). Ridge regression in prediction problems: Automatic choice of the ridge parameter.

Genetic Epidemiology, 37, 704–714.

Quiros, A. C., Coudray, N., Yeaton, A., Yang, X., Chiriboga, L., Karimkhan, A., et al. (2022). Self-supervised learning unveils morphological clusters behind lung cancer types and prognosis. arXiv preprint.

Gensheimer, M. F., Aggarwal, S., Benson, K. R. K., Carter, J. N., Henry, A. S., Wood, D. J., et al. (2021). Automated model versus treating physician for predicting survival time of patients with metastatic cancer. Journal of the American Medical Informatics Association, 28, 1108–1116.

Doppalapudi, S., Qiu, R. G., & Badr, Y. (2021). Lung cancer survival period prediction and understanding: Deep learning approaches. International Journal of Medical Informatics, 148, 104371.

Nair, M., Sandhu, S. S., & Sharma, A. K. (2014). Prognostic and predictive biomarkers in cancer. Current Cancer Drug Targets, 14, 477–504.

Chow, E., Davis, L., Panzarella, T., Hayter, C., Szumacher, E., Loblaw, A., et al. (2005). Accuracy of survival prediction by palliative radiation oncologists. International Journal of Radiation Oncology, Biology, Physics, 61, 870–873.

Lakin, J. R., Robinson, M. G., Bernacki, R. E., Powers, B. W., Block, S. D., Cunningham, R., et al. (2016). Estimating 1-year mortality for high-risk primary care patients using the ‘‘surprise” question. JAMA Internal Medicine, 176, 1863– 1865.

White, N., Reid, F., Harris, A., Harries, P., & Stone, P. (2016). A systematic review of predictions of survival in palliative care: How accurate are clinicians and who are the experts? PLoS ONE, 11, e0161407.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34, 187–220.

Wang, X., Yao, S., Xiao, Z., Gong, J., Liu, Z., Han, B., et al. (2020). Development and validation of a survival model for lung adenocarcinoma based on autophagy-associated genes. Journal of Translational Medicine, 18, 149.

Zhang, Y. H., Lu, Y., Lu, H., & Zhou, Y. M. (2020). Development of a survival prognostic model for non-small cell lung cancer. Frontiers in Oncology, 10, 362.

Yu, K. H., Zhang, C., Berry, G. J., Altman, R. B., Re, C., Rubin, D. L., et al. (2016). Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications, 7, 12474.

Hatlen, P., Gronberg, B. H., Langhammer, A., Carlsen, S. M., & Amundsen, T. (2011). Prolonged survival in patients with lung cancer with diabetes mellitus. Journal of Thoracic Oncology, 6, 1810–1817.

Chen, Y. C., Ke, W. C., & Chiu, H. W. (2014). Risk classification of cancer survival using ANN with gene expression data from multiple laboratories. Computers in Biology and Medicine, 48, 1–7. https://doi.org/10.1016/j.compbiomed.2014.02.005

Liu, Y., Yang, M., Sun, W., Zhang, M., Sun, J., Wang, W., et al. (2020). Developing prognostic gene panel of survival time in lung adenocarcinoma patients using machine learning. Translational Cancer Research, 9, 3860–3869.

Yu, J., Hu, Y., Xu, Y., Wang, J., Kuang, J., Zhang, W., et al. (2019). LUADpp: An effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features. BMC Cancer, 19, 263.

Cho, H. J., Lee, S., Ji, Y. G., & Lee, D. H. (2018). Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma. PLoS ONE, 13, e0207204.

Hui, X., Hu, Y., Sun, M. A., Shu, X., Han, R., Ge, Q., et al. (2017). EBT: A statistic test identifying a moderate size of significant features with balanced power and precision for genome-wide rate comparisons. Bioinformatics, 33(17), 2631– 2641.

Yu, K. H., Berry, G. J., Rubin, D. L., Re, C., Altman, R. B., & Snyder, M. (2017). Association of omics features with histopathology patterns in lung adenocarcinoma. Cell Systems, 5(6), 620–627.e3.

Ramazzotti, D., Lal, A., Wang, B., Batzoglou, S., & Sidow, A. (2018). Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nature Communications, 9, 4453.

Asada, K., Kobayashi, K., Joutard, S., Tubaki, M., Takahashi, S., Takasawa, K., et al. (2020). Uncovering prognosis- related genes and pathways by multi-omics analysis in lung cancer. Biomolecules, 10(4), 524. https://doi.org/10.3390/biom10040524

Takahashi, S., Asada, K., Takasawa, K., Shimoyama, R., Sakai, A., Bolatkan, A., et al. (2020). Predicting deep learning-based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data. Biomolecules, 10(10), 1460.

Xia, L., Liu, Y., & Wang, Y. (2019). PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. The Oncologist, 24(Suppl 1), S31–S41.

Doroshow, D. B., Sanmamed, M. F., Hastings, K., Politi, K., Rimm, D. L., Chen, L., et al. (2019). Immunotherapy in non-small cell lung cancer: Facts and hopes. Clinical Cancer Research, 25(15), 4592–4602.

Lim, S. M., Hong, M. H., & Kim, H. R. (2020). Immunotherapy for non-small cell lung cancer: Current landscape and future perspectives. Immune Network, 20(1), e10.

Xu, Z., Wang, X., Zeng, S., Ren, X., Yan, Y., & Gong, Z. (2021). Applying artificial intelligence for cancer immunotherapy. Acta Pharmaceutica Sinica B, 11(11), 3393–3405.

Wiesweg, M., Mairinger, F., Reis, H., Goetz, M., Kollmeier, J., Misch, D., et al. (2020). Machine learning reveals a PD-L1-independent prediction of response to immunotherapy of non-small cell lung cancer by gene expression context. European Journal of Cancer, 140, 76–85.

Trebeschi, S., Drago, S. G., Birkbak, N. J., Kurilova, I., Calin, A. M., Pizzi, A. D., et al. (2019). Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Annals of Oncology, 30(6), 998–1004.

Coroller, T. P., Agrawal, V., Narayan, V., Hou, Y., Grossmann, P., Lee, S. W., et al. (2016). Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiotherapy and Oncology, 119(3), 480–486.

Tosolini, M., Pont, F., Poupot, M., Vergez, F., Nicolau-Travers, M. L., Vermijlen, D., et al. (2017). Assessment of tumor-infiltrating TCRV?9V?2 T lymphocyte abundance by deconvolution of human cancers microarrays.

Oncoimmunology, 6(1), e1284723.

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457.

Sun, R., Limkin, E. J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S. R., et al. (2018). A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study. The Lancet Oncology, 19(9), 1180–1191.

Saltz, J., Gupta, R., Hou, L., Kurc, T., Singh, P., Nguyen, V., et al. (2018). Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Reports, 23(1), 181–193.

Hou, L., Nguyen, V., Kanevsky, A. B., Samaras, D., Kurc, T. M., Zhao, T., et al. (2019). Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognition, 86, 188–200. https://doi.org/10.1016/j.patcog.2018.09.001

Xu, Y., Jia, Z. P., Ai, Y., Zhang, F., Lai, M., & Chang, E. I. C. (2015). Deep convolutional activation features for large-scale brain tumor histopathology image classification and segmentation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2015), 947–951.

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision (ICCV 2015), 1520–1528.

De Mattos-Arruda, L., Vazquez, M., Finotello, F., Lepore, R., Porta, E., Hundal, J., et al. (2020). Neoantigen prediction and computational perspectives towards clinical benefit: Recommendations from the ESMO precision medicine working group. Annals of Oncology, 31(8), 978–990.

Roudko, V., Greenbaum, B., & Bhardwaj, N. (2020). Computational prediction and validation of tumor-associated neoantigens. Frontiers in Immunology, 11, 27.

Zhang, Z., Lu, M., Qin, Y., Gao, W., Tao, L., Su, W., et al. (2021). Neoantigen: A new breakthrough in tumor immunotherapy. Frontiers in Immunology, 12, 672356. [149]Hilf, N., Kuttruff-Coqui, S., Frenzel, K., Bukur, V., Stevanovic,

S., Gouttefangeas, C., et al. (2019). Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 565, 240–245.

Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., et al. (2015). A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348(6236), 803–808.

Ott, P. A., Hu, Z., Keskin, D. B., Shukla, S. A., Sun, J., Bozym, D. J., et al. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 547, 217–221. https://doi.org/10.1038/nature22991

Keskin, D. B., Anandappa, A. J., Sun, J., Tirosh, I., Mathewson, N. D., Li, S., et al. (2019). Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 565, 234–239.

Zhao, W., & Sher, X. (2018). Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLoS Computational Biology, 14(11), e1006457.

Racle, J., Michaux, J., Rockinger, G. A., Arnaud, M., Bobisse, S., Chong, C., et al. (2019). Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nature Biotechnology, 37, 1283–1286.

Chen, B. B., Khodadoust, M. S., Olsson, N., Wagar, L. E., Fast, E., Liu, C. L., et al. (2019). Predicting HLA class II antigen presentation through integrated deep learning. Nature Biotechnology, 37, 1332–1343.

O’Donnell, T. J., Rubinsteyn, A., Bonsack, M., Riemer, A. B., Laserson, U., & Hammerbacher, J. (2018). MHCflurry: Open-source class I MHC binding affinity prediction. Cell Systems, 7(1), 129–132.

Bulik-Sullivan, B., Busby, J., Palmer, C. D., Davis, M. J., Murphy, T., Clark, A., et al. (2019). Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nature Biotechnology, 37, 55–63.

Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O., & Nielsen, M. (2008). NetMHC-3.0: Accurate web- accessible predictions of human, mouse, and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Research, 36(Web Server issue), W509–W512.

Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S. L., Lamberth, K., Buus, S., et al. (2003). Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science, 12(5), 1007–1017.

Buus, S., Stryhn, A., Winther, K., Kirkby, N., & Pedersen, L. O. (1995). Receptor-ligand interactions measured by an improved spun column chromatography technique: A high-efficiency and high-throughput size separation method.

Biochimica et Biophysica Acta, 1243(3), 453–460. https://doi.org/10.1016/0304-4165(95)00114-5

Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., & Nielsen, M. (2017). NetMHCpan-4.0: Improved peptide– MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. Journal of Immunology, 199(9), 3360–3368.

Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Justesen, S., et al. (2007). NetMHCpan: A method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One, 2(8), e796.

Ye, L., Creaney, J., Redwood, A., & Robinson, B. (2021). The current lung cancer neoantigen landscape and implications for therapy. Journal of Thoracic Oncology, 16(6), 922–932.

Gong, L., He, R., Xu, Y., Luo, T., Jin, K., Yuan, W., et al. (2021). Neoantigen load as a prognostic and predictive marker for stage II/III non-small cell lung cancer in Chinese patients. Thoracic Cancer, 12(14), 2170–2181.

Zhang, W., Yin, Q., Huang, H., Lu, J., Qin, H., Chen, S., et al. (2021). Personal neoantigens from patients with NSCLC induce efficient antitumor responses. Frontiers in Oncology, 11, 628456.

Genomics Proteomics Bioinformatics 20 (2022) 850–866

Zou, L., Yu, S., Meng, T., Zhang, Z., Liang, X., & Xie, Y. (2019). A technical review of convolutional neural network- based mammographic breast cancer diagnosis. Computational and Mathematical Methods in Medicine, 2019, 6509357.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

Mao, C., Yao, L., & Luo, Y. (2022). ImageGCN: Multi-relational image graph convolutional networks for disease identification with chest X-rays. IEEE Transactions on Medical Imaging, 41, 1990–2003.

Mao, C., Yao, L., Pan, Y., Zeng, Z., & Luo, Y. (2018). Deep generative classifiers for thoracic disease diagnosis with chest X-ray images. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2018, 1209–1214.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et al. (2020). An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F., & Shah, M. (2022). Transformers in vision: A survey. arXiv preprint arXiv:2101.01169.

Boesch, G. (2022). Vision transformers (ViT) in image recognition - 2022 guide. Retrieved from https://viso.ai/deep- learning/vision-transformer-vit/

Hie, B., Zhong, E. D., Berger, B., & Bryson, B. (2021). Learning the language of viral evolution and escape. Science, 371, 284–288.

Flagel, L., Brandvain, Y., & Schrider, D. R. (2019). The unreasonable effectiveness of convolutional neural networks in population genetic inference. Molecular Biology and Evolution, 36, 220–238.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., & Yosef, N. (2018). Deep generative modeling for single-cell transcriptomics. Nature Methods, 15, 1053–1058.

Hashim, S., Ali, M., Nandakumar, K., & Yaqub, M. (2022). SubOmiEmbed: Self-supervised representation learning of multi-omics data for cancer type classification. Proceedings of the 10th International Conference on Bioinformatics and Computational Biology (ICBCB), 66–72.

Lee, J., Hyeon, D. Y., & Hwang, D. (2020). Single-cell multiomics: Technologies and data analysis methods.

Experimental & Molecular Medicine, 52, 1428–1442.

Rao, A., Barkley, D., Franca, G. S., & Yanai, I. (2021). Exploring tissue architecture using spatial transcriptomics.

Nature, 596, 211–220.

Li, Y., Liu, Q., Zeng, Z., & Luo, Y. (2022). Using an unsupervised clustering model to detect the early spread of SARS-CoV-2 worldwide. Genes, 13, 648.

Tian, T., Wan, J., Song, Q., & Wei, Z. (2019). Clustering single-cell RNA-seq data with a model-based deep learning approach. Nature Machine Intelligence, 1, 191–198.

Hu, J., Li, X., Hu, G., Lyu, Y., Susztak, K., & Li, M. (2020). Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis. Nature Machine Intelligence, 2, 607–618.

Brbic, M., Zitnik, M., Wang, S., Pisco, A. O., Altman, R. B., Darmanis, S., et al. (2020). MARS: Discovering novel cell types across heterogeneous single-cell experiments. Nature Methods, 17, 1200–1206.

Shen, H., Li, Y., Feng, M., Shen, X., Wu, D., Zhang, C., et al. (2021). Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome. iScience, 24, 103200.

Song, Q., Su, J., & Zhang, W. (2021). scGCN is a graph convolutional networks algorithm for knowledge transfer in single-cell omics. Nature Communications, 12, 3826.

Wang, T., Shao, W., Huang, Z., Tang, H., Zhang, J., Ding, Z., et al. (2021). Mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications, 12, 3445.

Wang, Y., Zhang, Z., Chai, H., & Yang, Y. (2021). Multi-omics cancer prognosis analysis based on graph convolution network. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021, 1564–1568.

Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q., et al. (2020). Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. Information Fusion, 64, 149–187. https://doi.org/10.1016/j.inffus.2020.07.002

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., et al. (2019). Comprehensive integration of single-cell data. Cell, 177, 1888–1902.

Subramanian, I., Verma, S., Kumar, S., Jere, A., & Anamika, K. (2020). Multi-omics data integration, interpretation, and its application. Bioinformatics and Biology Insights, 14, 1177932219899051.

Welch, J. D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., & Macosko, E. Z. (2019). Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell, 177, 1873–1887.

Luo, Y., Eran, A., Palmer, N., Avillach, P., Levy-Moonshine, A., Szolovits, P., et al. (2020). A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nature Medicine, 26, 1375–1379.

Diao, L., Guo, H., Zhou, Y., & He, Y. (2021). Bridging the gap between outputs: Domain adaptation for lung cancer IHC segmentation. IEEE International Conference on Image Processing, 6–10.

Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Buttner, M., Wagenstetter, M., et al. (2022). Mapping single-cell data to reference atlases by transfer learning. Nature Biotechnology, 40, 121–130.

Arrieta, A. B., Diaz-Rodriguez, N., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A., et al. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82– 115.

Salahuddin, Z., Woodruff, H. C., Chatterjee, A., & Lambin, P. (2021). Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in Biology and Medicine, 140, 105111.

Antoniadi, A. M., Du, Y., Guendouz, Y., Wei, L., Mazo, C., Becker, B. A., et al. (2021). Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review. Applied Sciences, 11, 5088.

Kourou, K., Exarchos, K. P., Papaloukas, C., Sakaloglou, P., Exarchos, T., & Fotiadis, D. I. (2021). Applied machine learning in cancer research: A systematic review for patient diagnosis, classification, and prognosis. Computational and Structural Biotechnology Journal, 19, 5546–5555.

Maier-Hein, L., Reinke, A., Godau, P., Tizabi, M. D., Christodoulou, E., Glocker, B., et al. (2022). Metrics reloaded: Pitfalls and recommendations for image analysis validation. arXiv preprint arXiv:2206.01653.

Meropol, N. J., Donegan, J., & Rich, A. S. (2021). Progress in the application of machine learning algorithms to cancer research and care. JAMA Network Open, 4, e2116063.

Sheehan, D. F., Criss, S. D., Chen, Y. F., Eckel, A., Palazzo, L., Tramontano, A. C., et al. (2019). Lung cancer costs by treatment strategy and phase of care among patients enrolled in Medicare. Cancer Medicine, 8, 94–103.

Mao, C., Yao, L., & Luo, Y. (2022). MedGCN: Medication recommendation and lab test imputation via graph convolutional networks. Journal of Biomedical Informatics, 127, 104000.

Zhu, J., Wang, J., Wang, X., Gao, M., Guo, B., Gao, M., et al. (2021). Prediction of drug efficacy from transcriptional profiles with deep learning. Nature Biotechnology, 39, 1444–1452.

Luo, Y., Wunderink, R. G., & Lloyd-Jones, D. (2022). Proactive vs reactive machine learning in health care: Lessons from the COVID-19 pandemic. JAMA, 327, 623–624.

H. S., Gao, C. X., Wang, H. B., Luo, S. S., Chen, S. Y., Dong, Y. L., et al. (2020). Concordance of treatment recommendations for metastatic non-small-cell lung cancer between Watson for Oncology system and medical team. Cancer Management and Research, 12, 1947–1958.

Liu, C., Liu, X., Wu, F., Xie, M., Feng, Y., & Hu, C. (2018). Using artificial intelligence (Watson for Oncology) for treatment recommendations amongst Chinese patients with lung cancer: Feasibility study. Journal of Medical Internet Research, 20, e11087.

Additional Files

Published

2025-04-28

How to Cite

Kumari, R., kumari, S., & Ahmad3, S. (2025). Lung Cancer Diagnosis, Treatment, and Prognosis Using Machine Learning. International Transactions on Electrical Engineering and Computer Science, 4(2). https://doi.org/10.62760/iteecs.4.2.2025.133

Issue

Section

Articles