Early Detection of Lung Cancer using Machine Learning Algorithms

Authors

  • Rimjhim Kumari Department of Computer Science and Applications, Sharda School of Computing Science and Engineering, Sharda University, Greater Noida – 201306, India https://orcid.org/0009-0009-6776-0411
  • Shalu Kumari Department of Computer Science and Applications, Sharda School of Computing Science and Engineering, Sharda University, Greater Noida – 201306, India
  • Sharik Ahmad Department of Computer Science and Applications, Sharda School of Computing Science and Engineering, Sharda University, Greater Noida – 201306, India https://orcid.org/0000-0001-5994-4995

DOI:

https://doi.org/10.62760/iteecs.4.2.2025.133

Keywords:

Omics datasets, Sequencing technologies, Intricate datasets, Immunotherapy, Machine learning

Abstract

Recent advances in imaging and sequencing technology have enabled a systematic advancement in the medical treatment of carcinoma of the lungs. Meanwhile, the human mind's ability to comprehend and make optimal use of the collection for these enormous amounts of knowledge is limited. Through the combination and investigation of this extensive and complex information, lung cancer has been extensively explained using a variety of perspectives from the gathered data, is made possible in great part by machine learning-based methodologies. We give a summary of machine learning based methods in this review that support the various facets of lung cancer treatment as well as diagnosis, involving prognostication, vaccinations, rapid identification, and auxiliary diagnostics. Furthermore, we highlight the challenges and opportunities regarding potential artificial intelligence uses for the illness.

References

J. D. Minna, J. A. Roth, and A. F. Gazdar, “Focus on lung cancer”, Cancer cell, Vol. 1, No. 1, pp. 49-52, 2002.

https://doi.org/10.1016/S1535-6108(02)00027-2

E. Svoboda, “Artificial intelligence is improving the detection of lung cancer”, Nature, Vol. 587, No. 7834, pp. S20–S22, 2020.

https://doi.org/10.1038/d41586-020-03157-9

S. Ling, Z. Hu, Z. Yang “Extremely high genetic diversity in a single tumor point to the prevalence of non-Darwinian cell evolution”, Proceedings of the National Academy of Sciences of the USA, Vol. 112, No. 47, pp. E6496–E6505, 2015.

https://doi.org/10.1073/pnas.1519556112

T. J. Hudson et al., “International network of cancer genome projects,” Nature, Vol. 464, No. 7286, pp. 993–998, 2010.

https://doi.org/10.1038/nature08987

J. N. Weinstein et al., “The Cancer Genome Atlas Pan-Cancer analysis project”, Nature Genetics, Vol. 45, No. 10, pp. 1113–1120, 2013.

https://doi.org/10.1038/ng.2764

K. Clark et al., “The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository”, Journal of Digital Imaging, Vol. 26, No. 6, pp. 1045–1057, 2013.

https://doi.org/10.1007/s10278-013-9622-7

A. Pavlopoulou, D. A. Spandidos, and I. Michalopoulos, “Human cancer databases (Review)”, Oncology Reports, Vol. 33, No. 1, p. 3-18, 2014.

https://doi.org/10.3892/or.2014.3579

Y. Luo, F. Wang, and P. Szozovits, “Tensor factorization toward precision medicine”, Briefings in Bioinformatics, Vol. 18, No. 3, pp. 511–514, 2017.

https://doi.org/10.1093/bib/bbw026

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications”, SIAM Review, Vol. 51, No. 3, pp. 455–500, 2009.

https://doi.org/10.1137/07070111X

G. Chao, C. Mao, F. Wang, Y. Zhao, and Y. Luo, “Supervised nonnegative matrix factorization to predict ICU mortality risk”, 2018 IEEE International Conference on Bioinformatics Biomedicine, pp. 1189–1194, 2018.

https://doi.org/10.1109/BIBM.2018.8621403

M. Ghafoorian, A. Mehrtash, T. Kapur, C. R. G. Guttaman, C. M. Tempany, W. M. Wells, et al., “Transfer learning for domain adaptation in MRI: Application in brain lesion segmentation”, International Conference on Medical image Computing and computer Assisted intervention, pp. 516–524, 2017.

https://doi.org/10.1007/978-3-319-66179-7_59

L. Xu, Z. Huang, Z. Zeng, J. Li, H. Xie and C. Xie, “An Integrative analysis of DNA methylation and gene expression to predict lung adenocarcinoma prognosis”, Frontiers in Genetics, Vol. 13-2022, art. no. 970507, 2022.

https://doi.org/10.3389/fgene.2022.970507

X. Y. Wang, S.H. WU, J. Ren, L. Y. Zeng, Li. Li. Guo “Predicting Gene Comutation of the EGFR and TP53 by Radiomics and Deep Learning in Patients with lung adenocarcinomas”, Journal of Thoracic Imaging, Vol. 40, No. 3, art. no. e0817, 2025.

https://doi.org/10.1097/rti.0000000000000817

E. Vassella, S. Langsch, M. S. Dettmer, C. Schlup, M. Frattini et al., “Molecular Profiling of lung adenosquamous carcinoma: hybrid or genuine type?”, Oncotarget, pp. 23905-23916, 2015.

https://doi.org/10.18632/oncotarget.4163

R. Ramirez, Y. C. Chiu, S. Zhang, J. Ramirez et al., “Prediction and interpretation of cancer survival using graph convolution neural networks”, Methods, Vol. 192, pp. 120-130, 2021.

https://doi.org/10.1016/j.ymeth.2021.01.004

R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. McConnell, G. Corrado, et al., “Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning”, Nature Biomedical Engineering, Vol. 2, pp. 158–164, 2018.

https://doi.org/10.1038/s41551-018-0195-0

R. Li, W. Zhang, J. Li et al., “Deep learning-based imaging data completion for improved brain disease diagnosis”, Medical image Computing and computer – Assisted intervention, pp. 305–312, 2014.

https://doi.org/10.1007/978-3-319-10443-0_39

W. Bai, C. Chen, G. Tarroni, J. Duan, F. Guitton, P. M. Matthews, et al., “Self-supervised Learning for cardiac MR Image segmentation by Anatomical position prediction”, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 541-549, 2019.

https://doi.org/10.1007/978-3-030-32245-8_60

F. Prior, K. Smith, A. Sharma, J. Kirbyet al., “The public cancer radiology imaging collections of the cancer imaging achieve”, Scientific Data, Vol. 4, art. no. 170124, 2017.

https://doi.org/10.1038/sdata.2017.124

P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gutman, J. S. B. Sloan, J. E. V. Vega, et al., “Predicting cancer outcomes from histology and genomics using convolutional networks”, Biophysics and Computational Biology, Vol. 115, No. 13, pp. E2970–E2979, 2018.

https://doi.org/10.1073/pnas.1717139115

Y. Li and Y. Luo, "Optimizing the Evaluation of gene-targeted panels for tumor mutational burden estimation", Scientific Reports, Vol. 11, art. no. 21072, 2021.

https://doi.org/10.1038/s41598-021-00626-7

S. Bhalla, A. Lagana, "Artificial intelligence for precision oncology", Advances in Experimental Medicine and Biology, Vol. 1361, pp. 249-268, 2022.

https://doi.org/10.1007/978-3-030-91836-1_14

Z. Zeng, S. Espino, A. Roy, X. Li, S. A. Khan, S. E. Clare, et al., "Using natural language processing and machine learning to identify breast cancer local recurrence", BMC Bioinformatics, Vol. 19, art. no. 498, pp. 498, 2018.

https://doi.org/10.1186/s12859-018-2466-x

Y. Luo, A. R. Sohani, E. P. Hochberg, and P. Szolovits, "Automatic lymphoma classification with sentence subgraph mining from pathology reports", Journal of the American Medical Informatics Association, Vol. 21, No. 5, pp. 824–832, 2014.

https://doi.org/10.1136/amiajnl-2013-002443

C. Luchini, A. Pea, and A. Scarpa, "Artificial intelligence in oncology: Current applications and future perspectives", British Journal of Cancer, Vol. 126, No. 4, pp. 4–9, 2022.

https://doi.org/10.1038/s41416-021-01633-1

Z. Zeng, A. Vo, X. Li, A. Shidfar, P. Saldana, L. Blanco, et al., "Somatic genetic aberrations in benign breast disease and the risk of subsequent breast cancer", NPJ Breast Cancer, Vol. 6, art. no. 24, 2020.

https://doi.org/10.1038/s41523-020-0165-z

J. Na, N. Zong, C. Wang, D. E. Midthun, Y. Luo, P. Yang, et al., "Characterizing phenotypic abnormalities associated with high-risk individuals developing lung cancer using electronic health records from the All of Us research workbench", Journal of the American Medical Informatics Association, Vol. 28, No. 11, pp. 2313–2324, 2021.

https://doi.org/10.1093/jamia/ocab174

H. Fujita, "AI-based computer-aided diagnosis (AI-CAD): the latest review to read first", Radiological Physics and Technology, Vol. 13, pp. 6 - 9, 2020.

https://doi.org/10.1007/s12194-019-00552-4

J. Yanase and E. Triantaphyllou, "A systematic survey of computer-aided diagnosis in medicine: Past and present developments", Expert Systems with Applications, Vol. 138, art. no. 112821, 2019.

https://doi.org/10.1016/j.eswa.2019.112821

Y. Abe, K. Hanai, M. Nakano, Y. Ohkubo, T. Hasizume, T. Kakizaki, et al., "A computer-aided diagnosis (CAD) system in lung cancer screening with computed tomography", Anticancer Research, Vol. 25, No. 6, pp. 483–488, 2005. [Cross Ref]

A. McWilliams, M. C. Tammemagi, J. R. Mayo, H. Roberts, G. Li, K. Soghrati, et al., "Probability of cancer in pulmonary nodules detected on first screening CT", The New England Journal of Medicine, Vol. 369, No. 10, pp. 910–919, 2013.

https://doi.org/10.1056/nejmoa1214726

S. J. van Riel, F. Ciompi, M. M. W. Wille, A. Dirksen, S. Lam, E. T. Scholten, et al., "Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers", PLoS One, Vol. 12, No. 11, art.no. e0185032, 2017.

https://doi.org/10.1371/journal.pone.0185032

M. M. W. Wille, S. J. van Riel, Z. Saghir, A. Dirksen, J. H. Pedersen, B. de Hoop, et al., "Predictive accuracy of the PanCan lung cancer risk prediction model—External validation based on CT from the Danish Lung Cancer Screening Trial", European Radiololgy., Vol. 25, No. 10, pp. 3093–3099, 2015.

https://doi.org/10.1007/s00330-015-3689-0

M. Kriegsmann, R. Casadonte, J. Kriegsmann, H. Dienemann, P. Schirmacher, J. H. Kobarg, et al., "Reliable entity subtyping in non-small cell lung cancer by matrix-assisted laser desorption/ ionization imaging mass spectrometry on formalin-fixed paraffin-embedded tissue specimens", Molecular& cellular Proteomics, Vol. 15, No. 10, pp. 3081–3089, 2016.

https://doi.org/10.1074/mcp.m115.057513

B. A. Mohammed, P. C. Brennan, and C. Mello-Thoms, "A review of lung cancer screening and the role of computer-aided detection", Clinical Radiololgy, Vol. 72, No. 6, pp. 433–442, 2017.

https://doi.org/10.1016/j.crad.2017.01.002

K. Murphy, B. V. Ginneken, A. M. R. Schilham, B.J.de hoop, H. A. Gietema and M. Prokop, "A Large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k – nearest neighbor classification", Medical Image Analysis, Vol. 13, No. 5, pp. 757-770, 2007.

https://doi.org/10.1016/j.media.2009.07.001

M. Buty, M. Gao, U. Bagci, A. Wu, and D. J. Mollura, "Characterization of lung nodule Malignancy using hybrid shape and appearance features", Medical Image Computing and Computer Assisted Intervention – MICCAI 2016, pp. 662–670, 2016.

https://doi.org/10.1007/978-3-319-46720-7_77

J. Zhang, M. Yang, W. Guo, B. A. Xavier, M. Bolen, and X.Li, "Detection-Guided Deep Learning – Based model with spatial regularization for lung nodule segmentation," Quantitative Imaging in Medicine and Surgery, Vol. 15, No. 5, pp. 4204-4216, 2025.

https://doi.org/10.21037/qims-2024-2511

F. Ciompi, B. de Hoop, S. van Riel, K. Chung, E. T. Scholten, M. Oudkerk, et al., "Automatic classification of pulmonary perifissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out of the box," Medical Image Analysis, Vol. 26, No. 1, pp. 195-202, 2015.

https://doi.org/10.1016/j.media.2015.08.001

A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks", Communications of the ACM, Vol. 60, No. 6, pp. 84–90, 2017.

https://doi.org/10.1145/3065386

F. Z. Ouadiay, H. Bouftaih, E. H. Bouyakhf, "Simultaneous object detection and localization using convolutional neural networks," International conference on intelligent system and computer vision, pp. 1-8, 2018.

https://doi.org/10.1109/ISACV.2018.8354045

J. Hussain, M. Bath, J. Ivarsson, "Generative adversarial networks in medical image reconstruction: A systematic literature review", Computers in biology and medicine, Vol. 191, art. no. 110094, 2025.

https://doi.org/10.1016/j.compbiomed.2025.110094

X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S. T. Yau, "Genus zero surface conformal mapping and its application to brain surface mapping", Information Processing Medical. Imaging, Vol. 18, pp. 172–184, 2003.

https://doi.org/10.1007/978-3-540-45087-0_15

K. V. Venkadesh, A. A. A. Setio, A. Schreuder, E. T. Scholten, K. M. Chung, M. M. W. Wille, et al., "Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT”, Radiology, Vol. 300, No. 2, pp. 438–447, 2021.

https://doi.org/10.1148/radiol.2021204433

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition", IEEE Conference Computer Vision Pattern Recognition, pp. 770–778, 2015.

https://doi.org/10.48550/arXiv.1512.03385

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., "Going deeper with convolutions", IEEE Conference Computer Vision Pattern Recognition, pp. 1–9, 2015.

https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298594

D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, et al., "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography", Nature Medicine, Vol. 25, pp. 954–961, 2019.

https://doi.org/10.1038/s41591-019-0447-x

K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN", Computer Vision Pattern Recognition, 2017.

https://doi.org/10.48550/arXiv.1703.06870

T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, "Focal loss for dense object detection", IEEE International conference on computer vision, pp. 2999–3007, 2017.

https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.324

J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new model and the Kinetics dataset”, IEEE International conference on computer vision andPattern Recognition, pp. 4724–4733, 2017.

https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.502

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 2818-2826, 2016.

https://doi.org/10.1109/CVPR.2016.308

K. AbdulJabbar et.al “Geospatial immune variability illuminates differential evolution of lung adenocarcinoma”, Nature Medicine, Vol. 26, pp. 1054–1062, 2020.

https://doi.org/10.1038/s41591-020-0900-x

S. E. A. Raza et.al., “Micro-Net: A unified model for segmentation of various objects in microscopy images”, Medical Image Analysis, Vol. 52, pp. 160–173, 2019.

https://doi.org/10.1016/j.media.2018.12.003

K. Sirinukunwattana et. al., “Locality-sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images”, IEEE Transactions Medical Imaging, Vol. 35, No. 5, pp. 1196–1206, 2016.

https://doi.org/10.1109/tmi.2016.2525803

N. Coudray et al., “Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning”, Nature medicine, Vol. 24, pp. 1559-1567, 2018.

https://doi.org/10.1038/s41591-018-0177-5

Q. Yao, L. Xiao, P. Liu, and S. K. Zhou, “Label-free segmentation of COVID-19 lesions in lung CT”, IEEE Transactions Medical Imaging, Vol. 40, pp. 2808–2819, 2021.

https://doi.org/10.1109/tmi.2021.3066161

M. J. M. Chuquicusma, S. Hussein, J. Burt, and U. Bagci, “How to fool radiologists with generative adversarial networks? A visual Turing test for lung cancer diagnosis”, Computer vision and pattern Recognition, pp. 240–244, 2018.

https://doi.org/10.48550/arXiv.1710.09762

J. Li, J. Jia, and D. Xu, “Unsupervised representation learning of image-based plant disease with deep convolutional generative adversarial networks”, Proceedings of Chinese Control Conference, pp. 9159–9163, 2018.

https://doi.org/10.23919/ChiCC.2018.8482813

C. H. Lin, C. J. Lin, Y. C. Li, and S. H. Wang, “Using generative adversarial networks and parameter optimization of convolutional neural networks for lung tumor classification”, Applied Sciences, Vol. 11, No. 2, art. no. 480, 2021.

https://doi.org/10.3390/app11020480

Z. Ren, Y. Zhang, and S. Wang, “A hybrid framework for lung cancer classification”, Electronics, Vol. 11, No. 10, art. no. 1614, 2022.

https://doi.org/10.3390/electronics11101614

P. F. Pinsky et al., “Performance of Lung-RADS in the National Lung Screening Trial: A retrospective assessment”, Annals of Internal Medicine, Vol. 162, No. 7, pp. 485–491, 2015.

https://doi.org/10.7326/m14-2086

National Lung Screening Trial Research Team et al., “Results of initial low-dose computed tomographic screening for lung cancer”, The New England Journal of Medicine, Vol. 368, No. 21, pp. 1980–1991, 2013.

https://doi.org/10.1056/nejmoa1209120

S. Herathet al., “The role of circulating biomarkers in lung cancer,” Frontiers in Oncology, Vol. 11, art. no. 801269, 2021.

https://doi.org/10.3389/fonc.2021.801269

K. Politi and R. S. Herbst, “Lung cancer in the era of precision medicine”, Clinical Cancer Research, Vol. 21, pp. 2213–2220, 2015.

https://doi.org/10.1158/1078-0432.ccr-14-2748

V. Relli, M. Trerotola, E. Guerra, and S. Alberti, “Abandoning the notion of non small cell lung cancer”, Trends in Molecular Medicine, Vol. 25, No. 7, pp. 585–594, 2019.

https://doi.org/10.1016/j.molmed.2019.04.012

J. W. Chen and J. Dhahbi, “Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods”, Scientific Reports, Vol. 11, art. no. 13323, 2021.

https://doi.org/10.1038/s41598-021-92725-8

Z. Zenget al., “Cancer classification and pathway discovery using non-negative matrix factorization”, Journal of Biomedical Informatics, Vol. 96, art. no. 103247, 2019.

https://doi.org/10.1016/j.jbi.2019.103247

W. Jiao et al., “A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns”, Nature Communications, Vol. 11, art. no. 728, 2020.

https://doi.org/10.1038/s41467-019-13825-8

Y. Li and Y. Luo, “Performance-weighted-voting model: An ensemble machine learning method for cancer type classification using whole exome sequencing mutation”, Quantitative Biology, Vol. 8, pp. 347–358, 2020.

https://doi.org/10.1007/s40484-020-0226-1

G. Eraslan, Z. Avsec, J. Gagneur, and F. J. Theis, “Deep learning: New computational modeling techniques for genomics”, Nature Review Genetics, Vol. 20, pp. 389–403, 2019.

https://doi.org/10.1038/s41576-019-0122-6

Y. Luo and C. Mao, “Panther: Pathway-augmented nonnegative tensor factorization for higher-order feature learning”, Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 1, pp. 37–180, 2021.

https://doi.org/10.1609/aaai.v35i1.16113

M. A. Shipp et al., “Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning”, Nature medicine, Vol. 8, pp. 68–74, 2002.

https://doi.org/10.1038/nm0102-68

I. Kononenko, “Machine learning for medical diagnosis: History, state of the art and perspective”, Artificial Intelligence in Medicine, Vol. 23, No. 1, pp. 89–109, 2001.

https://doi.org/10.1016/S0933-3657(01)00077-X

E. Ferrari, A. Retico, D. Bacciu “Measuring the effects of cofounders in medical supervised classification problems: the confounding index (CI)”, Artificial Intelligence in Medicine, Vol. 103, pp. 101804, 2020.

https://doi.org/10.1016/j.artmed.2020.101804

Z. Zenget al., “Deep learning for cancer type classification and driver gene identification”, BMC Bioinformatics, Vol. 22, art. no. 491, 2021.

https://doi.org/10.1186/s12859-021-04400-4

Y. Zhang et al., “Genetic load and potential mutational meltdown in cancer cell populations”, Molecular Biology and Evolution, Vol. 36, No. 3, pp. 541-552, 2019.

https://doi.org/10.1093/molbev/msy231

L. B. Alexandrov et al., “Signatures of mutational processes in human cancer”, Nature, Vol. 500, pp. 415–421, 2013.

https://doi.org/10.1038/nature12477

D. Mathios et al., “Detection and characterization of lung cancer using cell-free DNA fragmentomes”, Nature Communications, Vol. 12, pp. 5060, 2021.

https://doi.org/10.1038/s41467-021-24994-w

J. J. Chabon et al., “Integrating genomic features for non-invasive early lung cancer detection”, Nature, Vol. 580, pp. 245–251, 2020.

https://doi.org/10.1038/s41586-020-2140-0

W. Liang et al., “Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA)”, Theranostics, Vol. 9, No. 7, pp. 2056–2070, 2019.

https://doi.org/10.7150/thno.28119

L. Raman, M. van der Linden, K. van der Eecken, K. Vermaelen, I. Demedts, V. Surmont, et al., "Shallow whole-genome sequencing of plasma cell-free DNA accurately differentiates small from non-small cell lung carcinoma", Genome Medicine, Vol. 12, art. no. 35, 2020.

https://doi.org/10.1186/s13073-020-00735-4

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Molecular Biology of the Cel4th edition”, Annals botany, Vol. 91, No. 3, pp. 401, 2002.

https://doi.org/10.1093/aob/mcg023

K. Kobayashi, A. Bolatkan, S. Shiina, and R. Hamamoto, "Fully-connected neural networks with reduced parameterization for predicting histological types of lung cancer from somatic mutations", Biomolecules, Vol. 10, pp. 1249, 2020.

https://doi.org/10.3390/biom10091249

M. S. Lawrence, P. Stojanov, C. H. Mermel, J. T. Robinson, L. A. Garraway, T. R. Golub, et al., "Discovery and saturation analysis of cancer genes across 21 tumor type", Nature, Vol. 505, pp. 495–501, 2014.

https://doi.org/10.1038/nature12912

M. Uhlen, C. Zhang, S. Lee, E. Sjostedt, L. Fagerberg, G. Bidkhori, et al., "A pathology atlas of the human cancer transcriptome", Science, Vol. 357, No. 6352, 2017.

https://doi.org/10.1126/science.aan2507

D. H. Whitney, M. R. Elashoff, K. Porta-Smith, A. C. Gower, A. Vachani, J. S. Ferguson, et al., “Derivation of a bronchial genomic classifier for lung cancer in a prospective study of patients undergoing diagnostic bronchoscopy,” BMC Medical Genomics, Vol. 8, No. 18, 2015,

https://doi.org/10.1186/s12920-015-0091-3

M. D. Podolsky, A. A. Barchuk, V. I. Kuznetcov, N. F. Gusarova, V. S. Gaidukov, and S. A. Tarakanov, “Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels”, Asian Pacific journal of Cancer Prevention, vol. 17, pp. 835–838, 2016.

https://doi.org/10.7314/apjcp.2016.17.2.835

Y. Choi, J. Qu, S. Wu, Y. Hao, J. Zhang, J. Ning, et al., “Improving lung cancer risk stratification leveraging whole transcriptome RNA sequencing and machine learning across multiple cohorts”, BMC Medical Genomics, Vol. 13, No. 151, 2020.

https://doi.org/10.1186/s12920-020-00782-1

F. Alharbi, and A. Vakansi, “Machine learning methods for cancer classification using array gene expression data: A review“, Bioengineering, Vol.10, No. 2, art. no. 173, 2023.

https://doi.org/10.3390/bioengineering10020173

X. Shao, N. Lv, J. Liao, J. B. Long, R. Xue, N. Ai, et al., “Copy number variation is highly correlated with differential gene expression: A pan-cancer study”, BMC Medical Genetics, Vol. 20, No. 175, 2019.

https://doi.org/10.1186/s12881-019-0909-5

C. F. Aliferis, D. Hardin, and P. P. Massion, “Machine learning models for lung cancer classification using array comparative genomic hybridization”, AMIA Symposium, pp. 7–11, 2002.

https://pmc.ncbi.nlm.nih.gov/articles/PMC2244172/

A. Daemen, O. Gevaert, K. Leunen, E. Legius, I. Vergote, and B. De Moor, “Supervised classification of array CGH data with HMM-based feature selection”, Pacific Symposium on Biocomputing, pp. 468–479, 2009.

https://doi.org/10.1142/9789812836939_0045

P. Jurmeister, M. Bockmayr, P. Seegerer, T. Bockmayr, D. Treue, G. Montavon, et al., “Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases”, Science Translational Medicine, Vol. 11, No. 509, 2019.

https://doi.org/10.1126/scitranslmed.aaw8513

Y. Luo, G. Riedlinger, and P. Szolovits, “Text mining in cancer gene and pathway prioritization”, Cancer Informatics, Vol. 13, pp. 69–79, 2014.

https://doi.org/10.4137/cin.s13874

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using support vector machines”, Machine Learning, Vol. 46, pp. 389–422, 2002.

https://doi.org/10.1023/A:1012487302797

S. Mirhadi, S. Tam, Q. Li, N. Moghal, N. A. Pham, J. Tong, et al., “Integrative analysis of non-small cell lung cancer patient-derived xenografts identifies distinct proto types associated with patient outcomes”, Nature Communications, Vol. 13, art. no. 1811, 2022.

https://doi.org/10.1038/s41467-022-29444-9

J. Y. Xu, C. Zhang, X. Wang, L. Zhai, Y. Ma, Y. Mao, et al., “Integrative proteomic characterization of human lung adenocarcinoma”, Cell, Vol. 182, No. 1, pp. 245–261, 2020.

https://doi.org/10.1016/j.cell.2020.05.043

Y. Mardor, Y. Roth, A. Ocherashvilli, et al., “Pretreatment prediction of Brain Tumors Response to radiation therapy using high b-Value Diffusion-Weighted MRI1”, Neoplasia, Vol. 6, No. 2, pp. 136-142, 2004.

https://doi.org/10.1593/neo.03349

Z. Zeng, A. Amin, A. Roy, N. E. Pulliam, L. C. Karavites, S. Espino, et al., “Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients”, NPJ Breast Cancer, Vol. 6, No. 49, 2020.

https://doi.org/10.1038/s41523-020-00192-7

Y. Chang, H. Park, H. J. Yang, S. Lee, K. Y. Lee, T. S. Kim, et al., “Cancer drug response profile scan (CDRscan): A deep learning model that predicts drug effectiveness from cancer genomic signature”, Scientific Reports, Vol. 8, No. 8857, 2018.

https://doi.org/10.1038/s41598-018-27214-6

M. P. Menden, F. Iorio, M. Garnett, U. McDermott, C. H. Benes, P. J. Ballester, et al., “Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties”, PLoS ONE, Vol. 8, art. no. 0061318, 2013.

https://doi.org/10.1371/journal.pone.0061318

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, et al., “New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)”, European Journal of Cancer, Vol. 45, No. 2, pp. 228–247, 2009.

https://doi.org/10.1016/j.ejca.2008.10.026

G. Adam, L. Rampasek, Z. Safikhani, P. Smirnov, B. Haibe-Kains, and A. Goldenberg, “Machine learning approaches to drug response prediction: Challenges and recent progress”, NPJ Precision Oncology, Vol. 4, art. no. 19, 2020.

https://doi.org/10.1038/s41698-020-0122-1

J. Jiang, Y. C. Hu, C. J. Liu, D. Halpenny, M. D. Hellmann, J. O. Deasy, et al., “Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images”, IEEE Transactions on Medical Imaging, Vol. 38, No. 1, pp. 134–144, 2019.

https://doi.org/10.1109/TMI.2018.2857800

T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution residual networks for semantic segmentation in street scenes”, IEEE Conference on Computer Vision and Pattern Recognition, pp. 3309–3318, 2017.

https://doi.org/10.1109/CVPR.2017.353

R. Qureshi, “Personalized drug response prediction model for lung cancer patients using machine learning”, TechRxiv, preprint, 2020.

https://doi.org/10.36227/techrxiv.13273319.v1

A. Kapil, A. Meier, A. Zuraw, K. E. Steele, M. C. Rebelatto, G. Schmidt, et al., “Deep semi-supervised generative learning for automated tumor proportion scoring on NSCLC tissue needle biopsies”, Scientific Reports, Vol. 8, art. no. 17343, 2018.

https://doi.org/10.1038/s41598-018-35501-5

N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Transactions System, Man and Cybernetics, Vol. 9, No. 1, pp. 62–66, 1979.

https://doi.org/10.1109/TSMC.1979.4310076

P. Geeleher, N. J. Cox, and R. S. Huang, “Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines”, Genome Biology, Vol. 15, No. R47, 2014.

https://doi.org/10.1186/gb-2014-15-3-r47

E. Cule and M. De Iorio, “Ridge regression in prediction problems: Automatic choice of the ridge parameter”, Genetic Epidemiology, Vol. 37, No. 7, pp. 704–714, 2013.

https://doi.org/10.1002/gepi.21750

A. C. Quiros, N. Coudray, A. Yeaton, X. Yang, L. Chiriboga, A. Karimkhan, et al., “Self-supervised learning unveils morphological clusters behind lung cancer types and prognosis”, arXiv preprint arXiv: 2205.01931, 2022.

https://doi.org/10.48550/arXiv.2205.01931

M. F. Gensheimer, S. Aggarwal, K. R. K. Benson, J. N. Carter, A. S. Henry, D. J. Wood, et al., “Automated model versus treating physician for predicting survival time of patients with metastatic cancer”, Journal of the American Medical Informatics Association, Vol. 28, No. 6, pp. 1108–1116, 2021.

https://doi.org/10.1093/jamia/ocaa290

S. Doppalapudi, R. G. Qiu, and Y. Badr, “Lung cancer survival period prediction and understanding: Deep learning approaches”, International Journal of Medical Informatics, Vol. 148, art. no. 104371, 2021.

https://doi.org/10.1016/j.ijmedinf.2020.104371

M. Nair, S. S. Sandhu, and A. K. Sharma, “Prognostic and predictive biomarkers in cancer”, Current Cancer Drug Targets, Vol. 14, pp. 477–504, 2014.

https://doi.org/10.2174/1568009614666140506111118

E. Chow, L. Davis, T. Panzarella, C. Hayter, E. Szumacher, A. Loblaw, et al., “Accuracy of survival prediction by palliative radiation oncologists”, International Journal Radiation Oncololgy Biololgy Physics, Vol. 61, No. 3, pp. 870–873, 2005.

https://doi.org/10.1016/j.ijrobp.2004.07.697

J. R. Lakin, M. G. Robinson, R. E. Bernacki, B. W. Powers, S. D. Block, R. Cunningham, et al., “Estimating 1-year mortality for high-risk primary care patients using the ‘surprise’ question”, JAMA Internal Medicine, Vol. 176, No. 12, pp. 1863–1865, 2016.

https://doi.org/10.1001/jamainternmed.2016.5928

N. White, F. Reid, A. Harris, P. Harries, and P. Stone, “A systematic review of predictions of survival in palliative care: How accurate are clinicians and who are the experts?”, PLoS ONE, Vol. 11, art. no. 0161407, 2016.

https://doi.org/10.1371/journal.pone.0161407

D. R. Cox, “Regression models and life tables”, Journal of the Royol Statistical Society Series B (Methodological), Vol. 34, pp. 187–202, 2018.

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

X. Wang, S. Yao, Z. Xiao, J. Gong, Z. Liu, B. Han, et al., “Development and validation of a survival model for lung adenocarcinoma based on autophagy-associated genes”, Journal of Translational Medicine, Vol. 18, art. no. 149, 2020.

https://doi.org/10.1186/s12967-020-02321-z

Y. H. Zhang, Y. Lu, H. Lu, and Y. M. Zhou, “Development of a survival prognostic model for non-small cell lung cancer”, Frontiers in Oncology, Vol. 10, art. no. 362, 2020.

https://doi.org/10.3389/fonc.2020.00362

K. H. Yu, C. Zhang, G. J. Berry, R. B. Altman, R. E. Re, D. L. Rubin, et al., “Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features”, Nature Communications, Vol. 7, art. no. 12474, 2016.

https://doi.org/10.1038/ncomms12474

P. Hatlen, B. H. Gronberg, A. Langhammer, S. M. Carlsen, and T. Amundsen, “Prolonged survival in patients with lung cancer with diabetes mellitus”, Journal of Thoracic Oncology, Vol. 6, No. 11, pp. 1810–1817, 2011.

https://doi.org/10.1097/jto.0b013e31822a75be

Y. C. Chen, W. C. Ke, and H. W. Chiu, “Risk classification of cancer survival using ANN with gene expression data from multiple laboratories”, Computers in Biology and Medicine, Vol. 48, No. 1, pp. 1–7, 2014.

https://doi.org/10.1016/j.compbiomed.2014.02.006

Y. Liu, M. Yang, W. Sun, M. Zhang, J. Sun, W. Wang, et al., “Developing prognostic gene panel of survival time in lung adenocarcinoma patients using machine learning”, Translational Cancer Research, Vol. 9, No. 6, pp. 3860–3869, 2020.

https://doi.org/10.21037/tcr-19-2739

J. Yu, Y. Hu, Y. Xu, J. Wang, J. Kuang, W. Zhang, et al., “LUADpp: An effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features”, BMC Cancer, Vol. 19, art. no. 263, 2019.

https://doi.org/10.1186/S12885-019-5433-7

H. J. Cho, S. Lee, Y. G. Ji, and D. H. Lee, “Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma”, PLoS ONE, Vol. 13, No. 11, art. no. e0207204, 2018.

https://doi.org/10.1371/journal.pone.0207204

X. Hui, Y. Hu, M. A. Sun, X. Shu, R. Han, Q. Ge, et al., “EBT: A statistic test identifying a moderate size of significant features with balanced power and precision for genome-wide rate comparisons”, Bioinformatics, Vol. 33, No. 17, pp. 2631–2641, 2017.

https://doi.org/10.1093/bioinformatics/btx294

K. H. Yu, G. J. Berry, D. L. Rubin, R. E. Re, R. B. Altman, and M. Snyder, “Association of omics features with histopathology patterns in lung adenocarcinoma”, Cell Systems, Vol. 5, No. 6, pp. 620–627, 2017.

https://doi.org/10.1016/j.cels.2017.10.014

D. Ramazzotti, A. Lal, B. Wang, S. Batzoglou, and A. Sidow, “Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival”, Nature Communications, Vol. 9, art. no. 4453, 2018.

https://doi.org/10.1038/s41467-018-06921-8

K. Asada, K. Kobayashi, S. Joutard, M. Tubaki, S. Takahashi, K. Takasawa, et al., “Uncovering prognosis-related genes and pathways by multi-omics analysis in lung cancer”, Biomolecules, Vol. 10, No. 4, art. no. 524, 2020.

https://doi.org/10.3390/biom10040524

S. Takahashi, K. Asada, K. Takasawa, R. Shimoyama, A. Sakai, A. Bolatkan, et al., “Predicting deep learning-based multi-omics parallel integration survival subtypes in lung cancer using reverse phase protein array data”, Biomolecules, Vol. 10, No. 10, art. no. 1460, 2020.

https://doi.org/10.3390/biom10101460

L. Xia, Y. Liu, and Y. Wang, “PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions”, The Oncologist, Vol. 24, No. S1, pp. S31–S41, 2019.

https://doi.org/10.1634/theoncologist.2019-io-s1-s05

D. B. Doroshow, M. F. Sanmamed, K. Hastings, K. Politi, D. L. Rimm, L. Chen, et al., “Immunotherapy in non-small cell lung cancer: Facts and hopes”, Clinical Cancer Research, Vol. 25, No. 15, pp. 4592–4602, 2019.

https://doi.org/10.1158/1078-0432.ccr-18-1538

S. M. Lim, M. H. Hong, and H. R. Kim, “Immunotherapy for non-small cell lung cancer: Current landscape and future perspectives”, Immune Network, Vol. 20, No. 1, art. no. e10, 2020.

https://doi.org/10.4110/in.2020.20.e10

Z. Xu, X. Wang, S. Zeng, X. Ren, Y. Yan, and Z. Gong, “Applying artificial intelligence for cancer immunotherapy”, Acta Pharmaceutica Sinica B, Vol. 11, No. 11, pp. 3393–3405, 2021.

https://doi.org/10.1016/j.apsb.2021.02.007

M. Wiesweg, F. Mairinger, H. Reis, M. Goetz, J. Kollmeier, D. Misch, et al., “Machine learning reveals a PD-L1-independent prediction of response to immunotherapy of non-small cell lung cancer by gene expression context”, European Journal of Cancer, Vol. 140, pp. 76–85, 2020.

https://doi.org/10.1016/j.ejca.2020.09.015

S. Trebeschi, S. G. Drago, N. J. Birkbak, I. Kurilova, A. M. Calin, A. D. Pizzi, et al., “Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers”, Annals of Oncology, Vol. 30, No. 6, pp. 998–1004, 2019.

https://doi.org/10.1093/annonc/mdz108

T. P. Coroller, V. Agrawal, V. Narayan, Y. Hou, P. Grossmann, S. W. Lee, et al., “Radiomic phenotype features predict pathological response in non-small cell lung cancer”, Radiotherapy Oncology, Vol. 119, No. 3, pp. 480–486, 2016.

https://doi.org/10.1016/j.radonc.2016.04.004

M. Tosolini, F. Pont, M. Poupot, F. Vergez, M. L. Nicolau-Travers, D. Vermijlen, et al., “Assessment of tumor-infiltrating TCR V?9V?2 T lymphocyte abundance by deconvolution of human cancers microarrays”, Oncoimmunology, Vol. 6, No. 3, art. no. e1284723, 2017.

https://doi.org/10.1080/2162402X.2017.1284723

A. M. Newman, C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, et al., “Robust enumeration of cell subsets from tissue expression profiles”, Nature Methods, Vol. 12, pp. 453-457, 2015.

https://doi.org/10.1038/nmeth.3337

R. Sun, E. J. Limkin, M. Vakalopoulou, L. Dercle, S. Champiat, S. R. Han, et al., “To assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study”, The Lancet Oncology, Vol. 19, No. 9, pp. 1180–1191, 2018.

https://doi.org/10.1016/s1470-2045(18)30413-3

J. Saltz, R. Gupta, L. Hou, T. Kurc, P. Singh, V. Nguyen, et al., “Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images”, Cell Reports, Vol. 23, No. 1, pp. 181–193, 2018.

https://doi.org/10.1016/j.celrep.2018.03.086

L. Hou, V. Nguyen, A. B. Kanevsky, D. Samaras, T. M. Kurc, T. Zhao, et al., “Sparse auto encoder for unsupervised nucleus detection and representation in histopathology images”, Pattern Recognition, Vol. 86, pp. 188–200, 2019.

https://doi.org/10.1016/j.patcog.2018.09.007

Y. Xu, Z. P. Jia, Y. Ai, F. Zhang, M. Lai, and E. I. C. Chang, “Deep convolutional activation features for large-scale brain tumor histopathology image classification and segmentation”, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2015), pp. 947–951, 2015.

https://doi.org/10.1109/ICASSP.2015.7178109

H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation”, Computer Vision and pattern recognition, pp. 1520–1528, 2015.

https://doi.org/10.48550/arXiv.1505.04366

L. D. M. Arruda, M. Vazquez, F. Finotello, R. Lepore, E. Porta, J. Hundal, et al., “Neoantigen prediction and computational perspectives towards clinical benefit: Recommendations from the ESMO precision medicine working group”, Annals of Oncology, Vol. 31, No. 8, pp. 978–990, 2020.

https://doi.org/10.1016/j.annonc.2020.05.008

V. Roudko, B. Greenbaum, and N. Bhardwaj, “Computational prediction and validation of tumor-associated neoantigens”, Frontiers in Immunology, Vol. 11, art. no. 27, 2020.

https://doi.org/10.3389/fimmu.2020.00027

Z. Zhang, M. Lu, Y. Qin, W. Gao, L. Tao, W. Su, et al., “Neoantigen: A new breakthrough in tumor immunotherapy”, Frontiers of Immunology, Vol. 12, art. no. 672356, 2021.

https://doi.org/10.3389/fimmu.2021.672356

N. Hilf, S. Kuttruff-Coqui, K. Frenzel, V. Bukur, S. Stevanovic, C. Gouttefangeas, et al., “Actively personalized vaccination trial for newly diagnosed glioblastoma”, Nature, Vol. 565, pp. 240–245, 2019.

https://doi.org/10.1038/s41586-018-0810-y

B. M. Carreno, V. Magrini, M. Becker-Hapak, S. Kaabinejadian, J. Hundal, A. A. Petti, et al., “A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen specific T cells”, Science, Vol. 348, No. 6236, pp. 803–808, 2015.

https://doi.org/10.1126/science.aaa3828

P. A. Ott, Z. Hu, D. B. Keskin, S. A. Shukla, J. Sun, D. J. Bozym, et al., “An immunogenic personal neoantigen vaccine for patients with melanoma”, Nature, Vol. 547, pp. 217–221, 2017.

https://doi.org/10.1038/nature22991

D. B. Keskin, A. J. Anandappa, J. Sun, I. Tirosh, N. D. Mathewson, S. Li, et al., “Neoantigen vaccine generates intratumoral T cell responses in phase Ibglioblastoma trial”, Nature, Vol. 565, pp. 234–239, 2019.

https://doi.org/10.1038/s41586-018-0792-9

W. Zhao and X. Sher, “Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes”, PLoS Computational Biology, Vol. 14, No. 11, art. no. e1006457, 2018.

https://doi.org/10.1371/journal.pcbi.1006457

J. Racle, J. Michaux, G. A. Rockinger, M. Arnaud, S. Bobisse, C. Chong, et al., “Robust prediction of HLA class II epitopes by deep motif deconvolution of immune peptidomes”, Nature Biotechnology, Vol. 37, pp. 1283–1286, 2019.

https://doi.org/10.1038/s41587-019-0289-6

B. B. Chen, M. S. Khodadoust, N. Olsson, L. E. Wagar, E. Fast, C. L. Liu, et al., “Predicting HLA class II antigen presentation through integrated deep learning”, Nature Biotechnology, Vol. 37, pp. 1332–1343, 2019.

https://doi.org/10.1038/s41587-019-0280-2

T. J. O'Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, “MHC flurry: Open-source class I MHC binding affinity prediction”, Cell Systems, Vol. 7, No. 1, pp. 129–132, 2018.

https://doi.org/10.1016/j.cels.2018.05.014

B. Bulik-Sullivan, J. Busby, C. D. Palmer, M. J. Davis, T. Murphy, A. Clark, et al., “Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification”, Nature Biotechnology, Vol. 37, pp. 55–63, 2018.

https://doi.org/10.1038/nbt.4313

C. Lundegaard, K. Lamberth, M. Harndahl, S. Buus, O. Lund, and M. Nielsen, “NetMHC-3.0: Accurate web-accessible predictions of human, mouse, and monkey MHC class I affinities for peptides of length 8–11”, Nucleic Acids Research, Vol. 36, pp. W509–W512, 2008.

https://doi.org/10.1093/nar/gkn202

M. Nielsen, C. Lundegaard, P. Worning, S. L. Lauemoller, K. Lamberth, S. Buus, et al., “Reliable prediction of T-cell epitopes using neural networks with novel sequence representations”, Protein Science, Vol. 12, No. 5, pp. 1007–1017, 2003.

https://doi.org/10.1110/ps.0239403

S. Buus, A. Stryhn, K. Winther, N. Kirkby, and L. O. Pedersen, “Receptor-ligand interactions measured by an improved spun column chromatography technique: A high-efficiency and high-throughput size separation method”, Biochimica et Biophysica Acta, Vol. 1243, No. 3, pp. 453–460, 1995.

https://doi.org/10.1016/0304-4165(94)00172-T

V. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters, and M. Nielsen, “NetMHCpan-4.0: Improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data”, Journal of Immunology, Vol. 199, No. 9, pp. 3360–3368, 2017.

https://doi.org/10.4049/jimmunol.1700893

M. Nielsen, M. Andreatta “NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets”, PLoS One, Vol. 8, art. no. 33, 2016.

https://doi.org/10.1186/s13073-016-0288-x

L. Ye, J. Creaney, A. Redwood, and B. Robinson, “The current lung cancer neoantigen landscape and implications for therapy”, Journal of Thoracic Oncology, Vol. 16, No. 6, pp. 922–932, 2021.

https://doi.org/10.1016/j.jtho.2021.01.1624

L. Gong, R. He, Y. Xu, T. Luo, K. Jin, W. Yuan, et al., “Neoantigen load as a prognostic and predictive marker for stage II/III non-small cell lung cancer in Chinese patients”, Thoracic Cancer, Vol. 12, No. 15, pp. 2170–2181, 2021.

https://doi.org/10.1111/1759-7714.14046

W. Zhang, Q. Yin, H. Huang, J. Lu, H. Qin, S. Chen, et al., “Personal neoantigens from patients with NSCLC induce efficient antitumor responses”, Frontiers in Oncology, Vol. 11, p. 628456, 2021.

https://doi.org/10.3389/fonc.2021.628456

L. Zou, S. Yu, T. Meng, Z. Zhang, X. Liang, and Y. Xie, “A technical review of convolutional neural network-based mammographic breast cancer diagnosis,” Computational and Mathematical Methods in Medicine, Vol. 2019, art. no. 6509357, 2019.

https://doi.org/10.1155/2019/6509357

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, Vol. 521, pp. 436 - 444, 2015.

https://doi.org/10.1038/nature14539

C. Mao, L. Yao, and Y. Luo, “ImageGCN: Multi-relational image graph convolutional networks for disease identification with chest X-rays,” IEEE Transactions on Medical Imaging, Vol. 41, No. 8, pp. 1990–2003, 2022.

https://doi.org/10.1109/TMI.2022.3153322

C. Mao, L. Yao, Y. Pan, Z. Zeng, and Y. Luo, “Deep generative classifiers for thoracic disease diagnosis with chest X-ray images”, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1209–1214, 2019.

https://doi.org/10.1109/BIBM.2018.8621107

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., “An image is worth 16×16 words: Transformers for image recognition at scale”, arXiv preprint arXiv:2010.11929, 2020.

https://doi.org/10.48550/arXiv.2010.11929

S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. Khan, and M. Shah, “Transformers in vision: A survey”, ACM Computing Surveys, Vol. 54, No. 10s, pp. 1-41, 2022.

https://doi.org/10.1145/3505244

G. Boesch, “Comparing Vision transformers and convolutional neural networks for image classification: A Literature review”, Applied Sciences, Vol. 13, No. 9, art. no. 5521, 2023.

https://doi.org/10.3390/app13095521

B. Hie, E. D. Zhong, B. Berger, and B. Bryson, “Learning the language of viral evolution and escape”, Science, Vol. 371, No. 6526, pp. 284–288, 2021.

https://doi.org/10.1126/science.abd7331

L. Flagel, Y. Brandvain, and D. R. Schrider, “The unreasonable effectiveness of convolutional neural networks in population genetic inference”, Molecular Biology and Evolution, Vol. 36, No. 2, pp. 220–238, 2019.

https://doi.org/10.1093/molbev/msy224

R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef, “Deep generative modeling for single-cell transcriptomics”, Nature Methods, Vol. 15, pp. 1053–1058, 2018.

https://doi.org/10.1038/s41592-018-0229-2

S. Hashim, M. Ali, K. Nandakumar, and M. Yaqub, “SubOmiEmbed: Self-supervised representation learning of multi-omics data for cancer type classification”, Proceedings of the 10th International Conference on Bioinformatics and Computational Biology (ICBCB), pp. 66-72, 2022.

https://doi.org/10.1109/ICBCB55259.2022.9802478

J. Lee, D. Y. Hyeon, and D. Hwang, “Single-cell multiomics: Technologies and data analysis methods”, Experimental & Molecular Medicine, Vol. 52, pp. 1428–1442, 2020.

https://doi.org/10.1038/s12276-020-0420-2

A. Rao, D. Barkley, G. S. Franca, and I. Yanai, “Exploring tissue architecture using spatial transcriptomics”, Nature, Vol. 596, pp. 211–220, 2021.

https://doi.org/10.1038/s41586-021-03634-9

Y. Li, Q. Liu, Z. Zeng, and Y. Luo, “Using an unsupervised clustering model to detect the early spread of SARS-CoV-2 worldwide”, Genes, Vol. 13, No. 4, art. no. 648, 2022.

https://doi.org/10.3390/genes13040648

T. Tian, J. Wan, Q. Song, and Z. Wei, “Clustering single-cell RNA-seq data with a model-based deep learning approach”, Nature Machine Intelligence, Vol. 1, pp. 191–198, 2019.

https://doi.org/10.1038/s42256-019-0037-0

J. Hu, X. Li, G. Hu, Y. Lyu, K. Susztak, and M. Li, “Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis”, Nature Machine Intelligence, Vol. 2, pp. 607–618, 2020.

https://doi.org/10.1038/s42256-020-00233-7

M. Brbic, M. Zitnik, S. Wang, A. O. Pisco, R. B. Altman, S. Darmanis, et al., “MARS: Discovering novel cell types across heterogeneous single-cell experiments”, Nature Methods, Vol. 17, pp. 1200–1206, 2020.

https://doi.org/10.1038/s41592-020-00979-3

H. Shen, Y. Li, M. Feng, X. Shen, D. Wu, C. Zhang, et al., “Miscell: An efficient self-supervised learning approach for dissecting single cell transcriptome”, iScience, Vol. 24, No. 11, art. no. 103200, 2021.

https://doi.org/10.1016/j.isci.2021.103200

Q. Song, J. Su, and W. Zhang, “scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics”, Nature Communications, Vol. 12, art. no. 3826, 2021.

https://doi.org/10.1038/s41467-021-24172-y

T. Wang, W. Shao, Z. Huang, H. Tang, J. Zhang, Z. Ding, et al., “Mogonet integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification,” Nature Communications, Vol. 12, art. no. 3445, 2021.

https://doi.org/10.1038/s41467-021-23774-w

Y. Wang, Z. Zhang, H. Chai, and Y. Yang, “Multi-omics cancer prognosis analysis based on graph convolution network”, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1564–1568, 2021.

https://doi.org/10.1109/BIBM52615.2021.9669797

Y. D. Zhang, Z. Dong, S. H. Wang, X. Yu, X. Yao, Q. Zhou, et al., “Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation”, Information Fusion, Vol. 64, pp. 149–187, 2020.

https://doi.org/10.1016/j.inffus.2020.07.006

T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, et al., “Comprehensive integration of single-cell data”, Cell, Vol. 177, No. 7, pp. 1888–1902, 2019.

https://doi.org/10.1016/j.cell.2019.05.031

I. Subramanian, S. Verma, S. Kumar, A. Jere, and K. Anamika, “Multi-omics data integration, interpretation, and its application”, Bioinformatics and Biology Insights, Vol. 14, pp. 1-24, 2020.

https://doi.org/10.1177/1177932219899051

J. D. Welch, V. Kozareva, A. Ferreira, C. Vanderburg, C. Martin, and E. Z. Macosko, “Single-cell multi-omic integration compares and contrasts features of brain cell identity”, Cell, Vol. 177, pp. 1873–1887, 2019.

https://doi.org/10.1016/j.cell.2019.05.006

Y. Luo, A. Eran, N. Palmer, P. Avillach, A. Levy-Moonshine, P. Szolovits, et al., “A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia,” Nature Medicine, Vol. 26, pp. 1375–1379, 2020.

https://doi.org/10.1038/s41591-020-1007-0

L. Diao, H. Guo, Y. Zhou, and Y. He, “Bridging the gap between outputs: Domain adaptation for lung cancer IHC segmentation,” IEEE International Conference on Image Processing, pp. 6-10, 2021.

https://doi.org/10.1109/ICIP42928.2021.9506115

M. Lotfollahi, M. Naghipourfar, M. D. Luecken, M. Khajavi, M. Buttner, M. Wagenstetter, et al., “Mapping single-cell data to reference atlases by transfer learning,” Nature Biotechnology, Vol. 40, pp. 121–130, 2022.

https://www.nature.com/articles/s41587-021-01001-7

A. B. Arrieta, N. Diaz-Rodriguez, J. D. Ser, A. Bennetot, S. Tabik, A. Barbado, et al., “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI”, Information Fusion, Vol. 58, pp. 82–115, 2020.

https://doi.org/10.1016/j.inffus.2019.12.012

Z. Salahuddin, H. C. Woodruff, A. Chatterjee, and P. Lambin, “Transparency of deep neural networks for medical image analysis: A review of interpretability methods”, Computers in Biology and Medicine, Vol. 140, art. no. 105111, 2022.

https://doi.org/10.1016/j.compbiomed.2021.105111

A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker, et al., “Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review”, Applied Sciences, Vol. 11, No. 11, pp. 5088, 2021.

https://doi.org/10.3390/app11115088

K. Kourou, K. P. Exarchos, C. Papaloukas, P. Sakaloglou, T. Exarchos, and D. I. Fotiadis, “Applied machine learning in cancer research: A systematic review for patient diagnosis, classification, and prognosis”, Computational and Structural Biotechnology Journal, Vol. 19, pp. 5546–5555, 2021.

https://doi.org/10.1016/j.csbj.2021.10.006

L. Maier-Hein, A. Reinke, P. Godau, M. D. Tizabi, E. Christodoulou, B. Glocker, et al., “Metrics reloaded: recommendations for image analysis validation”, Nature Methods, Vol. 21, pp. 195-212, 2024.

https://doi.org/10.1038/s41592-023-02151-z

N. J. Meropol, J. Donegan, and A. S. Rich, “Progress in the application of machine learning algorithms to cancer research and care”, JAMA Network Open, Vol. 4, No. 7, art. no. e2116063, 2021.

https://doi.org/10.1001/jamanetworkopen.2021.16063

D. F. Sheehan, S. D. Criss, Y. F. Chen, A. Eckel, L. Palazzo, A. C. Tramontano, et al., “Lung cancer costs by treatment strategy and phase of care among patients enrolled in Medicare”, Cancer Medicine, Vol. 8, No. 1, pp. 94–103, 2018.

https://doi.org/10.1002/cam4.1896

C. Mao, L. Yao, and Y. Luo, “MedGCN: Medication recommendation and lab test imputation via graph convolutional networks”, Journal of Biomedical Informatics, Vol. 127, art. no. 104000, 2022.

https://doi.org/10.1016/j.jbi.2022.104000

J. Zhu, J. Wang, X. Wang, M. Gao, B. Guo, M. Gao, et al., “Prediction of drug efficacy from transcriptional profiles with deep learning”, Nature Biotechnology, Vol. 39, pp. 1444–1452, 2021.

https://doi.org/10.1038/s41587-021-00946-z

Y. Luo, R. G. Wunderink, and D. Lloyd-Jones, “Proactive vs reactive machine learning in healthcare: Lessons from the COVID-19 pandemic”, JAMA, Vol. 327, No. 7, pp. 623–624, 2022.

https://doi.org/10.1001/jama.2021.24935

H. S. Gao, C. X. Wang, H. B. Luo, S. S. Chen, S. Y. Dong, Y. L. et al., “Concordance of treatment recommendations for metastatic non-small-cell lung cancer between Watson for Oncology system and medical team”, Cancer Management and Research, Vol. 12, pp. 1947–1958, 2020.

https://doi.org/10.2147/cmar.s244932

C. Liu, X. Liu, F. Wu, M. Xie, Y. Feng, and C. Hu, “Using artificial intelligence (Watson for Oncology) for treatment recommendations amongst Chinese patients with lung cancer: Feasibility study”, Journal of Medical Internet Research, Vol. 20, No. 9, art. no. e11087, 2018.

https://doi.org/10.2196/11087

Additional Files

Published

2025-04-28

How to Cite

Kumari, R., Kumari, S., & Ahmad, S. (2025). Early Detection of Lung Cancer using Machine Learning Algorithms. International Transactions on Electrical Engineering and Computer Science, 4(2), 64–90. https://doi.org/10.62760/iteecs.4.2.2025.133

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.